技巧
自然溢出
自然溢出不会影响低位数据,所以有的时候你不需要取模,而是一个unsigned.
除法取模
对于式子
a × b c m o d p ≡ a × b m o d c p c \frac {a \times b}{c} \mod p \equiv \frac{a \times b \mod cp}{c}
c a × b m o d p ≡ c a × b m o d c p
细节
注意数据类型,例如6*(ll)(1<<30)
是要出问题的
注意函数在f ( 1 ) f(1) f ( 1 ) 位置的取值,不要忘记初始化
单点ϕ \phi ϕ 的求解
1 2 3 4 5 6 7 8 9 10 11 ll euler_phi (ll n) { ll m = sqrt (n + 0.5 ); ll ans = n; for (ll i = 2 ; i <= m; i++) if (n % i == 0 ) { ans = ans / i * (i - 1 ); while (n % i == 0 ) n /= i; } if (n > 1 ) ans = ans / n * (n - 1 ); return ans; }
Divisor
Given n n n and m m m (1 ≤ n , m ≤ 5 × 1 0 4 1 \leq n,m \leq 5 \times 10^4 1 ≤ n , m ≤ 5 × 1 0 4 ), please calculate
分析
下面所有的除法都是舍去小数的整除.
∑ i = 1 n ∑ j = 1 m σ 0 ( i j ) = ∑ i = 1 n ∑ j = 1 m ∑ p ∣ i ∑ q ∣ j [ p ⊥ q ] = ∑ i = 1 n ∑ j = 1 m ∑ p ∣ i ∑ q ∣ j ∑ d ∣ ( p , q ) μ ( d ) = ∑ i = 1 n ∑ j = 1 m ∑ p ∣ i ∑ q ∣ j ∑ d μ ( d ) [ d ∣ p ] [ d ∣ q ] = ∑ d μ ( d ) ∑ i = 1 n ∑ j = 1 m ∑ p d ∑ q d [ p d ∣ i ] [ q d ∣ j ] = ∑ d μ ( d ) ∑ p d ∑ q d ∑ i = 1 n / p d ∑ j = 1 m / q d = ∑ d μ ( d ) ∑ p d ∑ q d n p d m q d = ∑ d μ ( d ) ∑ p n / d n p d ∑ q m / d m q d \begin{aligned}
\sum_{i=1}^n\sum_{j=1}^m \sigma_0(ij) &= \sum_{i=1}^n\sum_{j=1}^m \sum_{p|i}\sum_{q|j}[p \perp q] \\
&=\sum_{i=1}^n\sum_{j=1}^m \sum_{p|i}\sum_{q|j}\sum_{d|(p,q)}\mu(d) \\
&=\sum_{i=1}^n\sum_{j=1}^m \sum_{p|i}\sum_{q|j}\sum_{d}\mu(d)[d|p][d|q] \\
&=\sum_d \mu(d)\sum_{i=1}^n\sum_{j=1}^m \sum_{pd} \sum_{qd}[pd|i][qd|j] \\
&=\sum_d \mu(d) \sum_{pd} \sum_{qd}\sum_{i=1}^{n/pd}\sum_{j=1}^{m/qd} \\
&=\sum_d \mu(d) \sum_{pd} \sum_{qd} \frac n {pd}\frac m {qd} \\
&=\sum_d \mu(d) \sum_p^{n/d} \frac n {pd} \sum_q^{m/d} \frac m {qd} \\
\end{aligned}
i = 1 ∑ n j = 1 ∑ m σ 0 ( i j ) = i = 1 ∑ n j = 1 ∑ m p ∣ i ∑ q ∣ j ∑ [ p ⊥ q ] = i = 1 ∑ n j = 1 ∑ m p ∣ i ∑ q ∣ j ∑ d ∣ ( p , q ) ∑ μ ( d ) = i = 1 ∑ n j = 1 ∑ m p ∣ i ∑ q ∣ j ∑ d ∑ μ ( d ) [ d ∣ p ] [ d ∣ q ] = d ∑ μ ( d ) i = 1 ∑ n j = 1 ∑ m p d ∑ q d ∑ [ p d ∣ i ] [ q d ∣ j ] = d ∑ μ ( d ) p d ∑ q d ∑ i = 1 ∑ n / p d j = 1 ∑ m / q d = d ∑ μ ( d ) p d ∑ q d ∑ p d n q d m = d ∑ μ ( d ) p ∑ n / d p d n q ∑ m / d q d m
设S ( n ) = ∑ 1 ≤ i ≤ n n i S(n)=\sum_{1\leq i \leq n} \frac n i S ( n ) = ∑ 1 ≤ i ≤ n i n
∑ i = 1 n ∑ j = 1 m σ 0 ( i j ) = ∑ d μ ( d ) S ( n / d ) S ( m / d ) \begin{aligned}
\sum_{i=1}^n\sum_{j=1}^m \sigma_0(ij) &=\sum_d \mu(d)S(n/d)S(m/d)
\end{aligned}
i = 1 ∑ n j = 1 ∑ m σ 0 ( i j ) = d ∑ μ ( d ) S ( n / d ) S ( m / d )
n / d n/d n / d 的取值在一个区间中是相同的,因此可以把这个求和公式分块计算.(在分块后,需要获知该段区域内μ \mu μ 的和,所以需要求前缀和)由于n / d n/d n / d 的取值为O ( n ) O(\sqrt n) O ( n ) 的级别,因此在知道S S S 的值的情况下,每个询问可以这个复杂度中计算出来.
对于μ \mu μ ,使用筛法,并求出其前缀和.
对于S S S ,直接暴力计算.
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 #include <iostream> #include <vector> #include <algorithm> using namespace std;using ll=long long ;const int MAXN=50010 ;bool isn_p[MAXN]; vector<int > primes;int mu[MAXN];int premu[MAXN];void init_prime (int len) { isn_p[1 ]=1 ; mu[1 ]=1 ; for (int i=2 ;i<=len;i++){ if (!isn_p[i]){ primes.push_back (i); mu[i]=-1 ; } for (int j=0 ;j<primes.size () && i*primes[j]<=len;j++){ isn_p[i*primes[j]]=1 ; mu[i*primes[j]]=mu[i]*-1 ; if (i%primes[j]==0 ){ mu[i*primes[j]]=0 ; break ; } } } premu[0 ]=0 ; for (int i=1 ;i<=len;i++)premu[i]=premu[i-1 ]+mu[i]; } ll S[MAXN];void init_S (int len) { for (int i=1 ;i<=len;i++){ for (int l=1 ,r;l<=i;l=r+1 ){ r=i/(i/l); S[i]+=(ll)(r-l+1 )*(i/l); } } }int main () { ios::sync_with_stdio (false ); init_prime (50000 ); init_S (50000 ); int kase;cin>>kase; while (kase--){ int n,m;cin>>n>>m; ll ans=0 ; int minn=min (n,m); for (int l=1 ,r;l<=minn;l=r+1 ){ r=min (n/(n/l),m/(m/l)); ans+=S[n/l]*S[m/l]*(premu[r]-premu[l-1 ]); } cout<<ans<<endl; } return 0 ; }
table
给出多组n , m , a n,m,a n , m , a ,求
∑ i = 1 n ∑ j = 1 m σ 1 ( ( i , j ) ) [ σ 1 ( ( i , j ) ) ≥ a ] \sum_{i=1}^n \sum_{j=1}^m \sigma_1((i,j))[\sigma_1((i,j)) \geq a]
i = 1 ∑ n j = 1 ∑ m σ 1 ( ( i , j ) ) [ σ 1 ( ( i , j ) ) ≥ a ]
分析
这道题让谁都能看出来重点是如何处理条件
[ σ 1 ( ( i , j ) ) ≥ a ] [\sigma_1((i,j)) \geq a]
[ σ 1 ( ( i , j ) ) ≥ a ]
可是这我显然不知道该怎么做.
对询问作以a a a 从小到大离线处理,询问前先处理新增a a a 的影响.
在已经满足条件的前提下对公式作化简.
∑ i = 1 n ∑ j = 1 m σ 1 ( ( i , j ) ) = ∑ d ∑ i = 1 n ∑ j = 1 m σ 1 ( d ) [ ( i , j ) = d ] = ∑ d ∑ i ≤ n d ∑ j ≤ m d σ 1 ( d ) [ ( i , j ) = 1 ] = ∑ d ∑ i ≤ n t d ∑ j ≤ m t d σ 1 ( d ) ∑ t μ ( t ) = ∑ d ∑ t μ ( t ) σ 1 ( d ) ∑ i ≤ n t d ∑ j ≤ m t d 1 = ∑ T ⌊ n T ⌋ ⌊ m T ⌋ ∑ d ∣ T μ ( t ) σ 1 ( T d ) \begin{aligned}
\sum_{i=1}^n \sum_{j=1}^m \sigma_1((i,j)) &= \sum_d \sum_{i=1}^n \sum_{j=1}^m \sigma_1(d)[(i,j)=d] \\
&=\sum_d \sum_{i\leq \frac nd}\sum_{j\leq \frac md}\sigma_1(d)[(i,j)=1] \\
&=\sum_d \sum_{i\leq \frac n{td}}\sum_{j\leq \frac m{td}}\sigma_1(d) \sum_t \mu(t) \\
&=\sum_d \sum_t \mu(t) \sigma_1(d) \sum_{i\leq \frac n{td}}\sum_{j\leq \frac m{td}} 1 \\
&=\sum_T \lfloor \frac nT \rfloor \lfloor \frac mT \rfloor \sum_{d|T}\mu(t)\sigma_1(\frac Td)
\end{aligned}
i = 1 ∑ n j = 1 ∑ m σ 1 ( ( i , j ) ) = d ∑ i = 1 ∑ n j = 1 ∑ m σ 1 ( d ) [ ( i , j ) = d ] = d ∑ i ≤ d n ∑ j ≤ d m ∑ σ 1 ( d ) [ ( i , j ) = 1 ] = d ∑ i ≤ t d n ∑ j ≤ t d m ∑ σ 1 ( d ) t ∑ μ ( t ) = d ∑ t ∑ μ ( t ) σ 1 ( d ) i ≤ t d n ∑ j ≤ t d m ∑ 1 = T ∑ ⌊ T n ⌋ ⌊ T m ⌋ d ∣ T ∑ μ ( t ) σ 1 ( d T )
可以看到还是套路,引入d,引入μ \mu μ ,之后胡乱化简.
按照这个式子,需要计算的就是g ( x ) = ∑ d ∣ T μ ( t ) σ 1 ( T d ) g(x)=\sum_{d|T}\mu(t)\sigma_1(\frac Td) g ( x ) = ∑ d ∣ T μ ( t ) σ 1 ( d T ) 的前缀和.
接下来是如何处理条件…
当a a a 每扩大一点,就有一部分μ ( t ) σ 1 ( T d ) \mu(t)\sigma_1(\frac Td) μ ( t ) σ 1 ( d T ) 被加入到函数g g g 的各个部分.使用一种数据结构来维护g g g 的前缀和,例如树状数组.a a a 最大到,每次受到影响的就是d d d 的倍数,以此可以计算出总的时间复杂度为
W T F WTF
W T F
至此,问题就解决了.
代码
又丑又长.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 #include <iostream> #include <vector> #include <algorithm> #include <cstring> #include <cassert> using namespace std;using ll=long long ;const int MAXN=100010 ;const int MAXQ=100010 ;const int MAXFT=400010 ;const ll P=(ll)1 <<31 ; ll FT[MAXFT];ll lowbit (int x) { return x&-x; }void ftadd (int pos,ll x) { for (int i=pos;i<MAXN;i+=lowbit (i)){ FT[i]=(FT[i]+x); } }ll ftget (int pos) { ll res=0 ; for (int i=pos;i;i-=lowbit (i)){ res=(res+FT[i]); } return res; }ll qpow (ll a,ll b,ll p) { ll res=1 ; for (b;b;b>>=1 ,a=(a*a)%p){ if (b&1 )res=(res*a)%p; } return res; }ll qpow (ll a,ll b) { ll res=1 ; for (b;b;b>>=1 ,a=(a*a)){ if (b&1 )res=(res*a); } return res; }bool is_np[MAXN]; ll sigma[MAXN],mu[MAXN];int t[MAXN]; vector<int > primes;struct Sig { ll sigma; int x; Sig (){} Sig (int x,ll sigma):x (x),sigma (sigma){} }; vector<Sig> sigma_vec;void init (int n) { is_np[1 ]=1 ; sigma[1 ]=1 ; mu[1 ]=1 ; for (int i=2 ;i<=n;i++){ if (!is_np[i]){ primes.push_back (i); sigma[i]=i+1 ; t[i]=1 ; mu[i]=-1 ; } for (int j=0 ;j<primes.size () && i*primes[j]<=n;j++){ is_np[i*primes[j]]=1 ; sigma[i*primes[j]]=sigma[i]*sigma[primes[j]]; t[i*primes[j]]=1 ; mu[i*primes[j]]=mu[i]*-1 ; if (i%primes[j]==0 ){ t[i*primes[j]]=t[i]+1 ; sigma[i*primes[j]]=sigma[i/qpow (primes[j],t[i])]*((ll)1 -qpow (primes[j],(t[i]+1 )+1 ))/(1 -primes[j]); mu[i*primes[j]]=0 ; break ; } } } for (int i=1 ;i<=n;i++){ sigma_vec.push_back (Sig (i,sigma[i])); } }struct Q { int n,m,a; int i; ll ans; bool operator <(const Q &b)const { return a<b.a; } } qs[MAXQ];ll f (int n) { return ftget (n); }int curidx=0 ;void mergea (int newa) { for (;curidx<sigma_vec.size ();curidx++){ Sig &sig=sigma_vec[curidx]; if (sig.sigma>newa)break ; for (int i=sig.x;i<MAXN;i+=sig.x){ ftadd (i,mu[i/sig.x]*sig.sigma%P); } } }int main () { init (100000 ); sort (sigma_vec.begin (),sigma_vec.end (),[](Sig &a,Sig &b){ return a.sigma<b.sigma; }); int qlen;cin>>qlen; for (int i=0 ;i<qlen;i++){ Q &q=qs[i]; scanf ("%d%d%d" ,&q.n,&q.m,&q.a); q.i=i; } sort (qs,qs+qlen,[](Q &a,Q &b){ return a.a<b.a; }); for (int i=0 ;i<qlen;i++){ Q &q=qs[i]; int n=q.n,m=q.m,a=q.a; ll &ans=q.ans=0 ; mergea (a); for (int l=1 ,r;l<=min (n,m);l=r+1 ){ r=min (n/(n/l),m/(m/l)); ans=ans+(n/l)*(m/l)*(f (r)-f (l-1 )); } } sort (qs,qs+qlen,[](Q &a,Q &b){ return a.i<b.i; }); for (int i=0 ;i<qlen;i++){ printf ("%lld\n" ,qs[i].ans%P); } return 0 ; }
product
定义斐波纳妾(?)(linux这输入法够魔性)函数f ( x ) f(x) f ( x )
求
∏ i = 1 n ∏ j = 1 m f ( ( i , j ) ) \prod_{i=1}^n \prod_{j=1}^m f((i,j))
i = 1 ∏ n j = 1 ∏ m f ( ( i , j ) )
分析
首先,先引个d d d 是没错了.
但是
这道题,我又不会.我不知道该怎么处理∏ \prod ∏ …蔡就完事了.
现在来看,当引入一个d d d 后,在该求积公式里出现了相同项相乘.将该部分的计算调整为幂,剩下的就又都一样了.
∏ i = 1 n ∏ j = 1 m f ( ( i , j ) ) = ∏ d f ( d ) ∑ i ≤ n ∑ j ≤ m [ ( i , j ) = d ] = ∏ d f ( d ) ∑ i ≤ n d ∑ j ≤ m d [ ( i , j ) = 1 ] = ∏ d f ( d ) ∑ t μ ( t ) ∑ i ≤ n t d ∑ j ≤ m t d 1 = ∏ d ∏ t f ( d ) μ ( t ) ∑ i ≤ n t d ∑ j ≤ m t d 1 = ∏ T ( ∏ d ∣ T f ( d ) μ ( T t ) ) ⌊ n T ⌋ ⌊ m T ⌋ \begin{aligned}
\prod_{i=1}^n \prod_{j=1}^m f((i,j)) &= \prod_d f(d)^{\sum_{i\leq n} \sum_{j \leq m} [(i,j)=d]} \\
&=\prod_d f(d)^{\sum_{i\leq \frac nd} \sum_{j \leq \frac md} [(i,j)=1]} \\
&=\prod_d f(d)^{\sum_t \mu(t) \sum_{i\leq \frac n{td}} \sum_{j \leq \frac m{td}} 1 } \\
&=\prod_d \prod_t f(d)^{\mu(t) \sum_{i\leq \frac n{td}} \sum_{j \leq \frac m{td}} 1 } \\
&=\prod_T (\prod_{d|T} f(d)^{\mu(\frac Tt)})^{\lfloor \frac nT \rfloor \lfloor \frac mT \rfloor }
\end{aligned}
i = 1 ∏ n j = 1 ∏ m f ( ( i , j ) ) = d ∏ f ( d ) ∑ i ≤ n ∑ j ≤ m [ ( i , j ) = d ] = d ∏ f ( d ) ∑ i ≤ d n ∑ j ≤ d m [ ( i , j ) = 1 ] = d ∏ f ( d ) ∑ t μ ( t ) ∑ i ≤ t d n ∑ j ≤ t d m 1 = d ∏ t ∏ f ( d ) μ ( t ) ∑ i ≤ t d n ∑ j ≤ t d m 1 = T ∏ ( d ∣ T ∏ f ( d ) μ ( t T ) ) ⌊ T n ⌋ ⌊ T m ⌋
设g ( x ) = ∏ d ∣ T f ( d ) μ ( T t ) g(x)=\prod_{d|T} f(d)^{\mu(\frac Tt)} g ( x ) = ∏ d ∣ T f ( d ) μ ( t T ) ,求前缀和就完事了.
这道题需要使用欧拉定理 来优化求幂的速度.
欧拉定理
当( a , p ) = 1 (a,p)=1 ( a , p ) = 1 ,有以下式子
a b ≡ a b m o d ϕ ( p ) ( m o d p ) a^b \equiv a^{b \mod \phi(p)} \pmod p
a b ≡ a b m o d ϕ ( p ) ( m o d p )
当( a , p ) ≠ 1 (a,p)\neq 1 ( a , p ) = 1 ,有扩展欧拉定理
a b ≡ a b m o d ϕ ( p ) + ϕ ( p ) ( m o d p ) a^b \equiv a^{b \mod \phi(p)+ \phi(p)} \pmod p
a b ≡ a b m o d ϕ ( p ) + ϕ ( p ) ( m o d p )
根据这2个式子,可以在快速降幂,来加快运算.
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 #include <iostream> #include <algorithm> #include <vector> #include <cstring> using namespace std;using ll=long long ;const int MAXN=1000010 ;const ll P=1e9 +7 ;inline ll qpow (ll a,ll b,ll p) { ll res=1 ; for (;b;b>>=1 ,a=a*a%p){ if (b&1 )res=res*a%p; } return res; }inline ll get_inv (ll a,ll p) { return qpow (a,p-2 ,p); }bool is_np[MAXN]; vector<int > primes; ll f[MAXN], g[MAXN]; ll inv_f[MAXN]; ll preg[MAXN],inv_pg[MAXN]; ll mu[MAXN];void init (int n) { is_np[1 ]=1 ; mu[1 ]=1 ; for (int i=2 ;i<=n;i++){ if (!is_np[i]){ primes.push_back (i); mu[i]=-1 ; } for (int j=0 ;j<primes.size () && i*primes[j]<=n;j++){ is_np[i*primes[j]]=1 ; mu[i*primes[j]]=mu[i]*-1 ; if (i%primes[j]==0 ){ mu[i*primes[j]]=0 ; break ; } } } f[1 ]=f[2 ]=1 ; for (int i=3 ;i<=n;i++){ f[i]=(f[i-1 ]+f[i-2 ])%P; } for (int i=1 ;i<=n;i++){ inv_f[i]=get_inv (f[i],P); } for (int i=1 ;i<=n;i++)g[i]=1 ; for (int i=1 ;i<=n;i++){ for (int j=i;j<=n;j+=i){ if (mu[j/i]==-1 )g[j]=(g[j]*inv_f[i])%P; else if (mu[j/i]==1 )g[j]=(g[j]*f[i])%P; } } preg[0 ]=1 ; for (int i=1 ;i<=n;i++)preg[i]=preg[i-1 ]*g[i]%P; inv_pg[0 ]=1 ; for (int i=1 ;i<=n;i++)inv_pg[i]=get_inv (preg[i],P)%P; }int main () { init (1000000 ); int kase; scanf ("%d" ,&kase); while (kase--){ ll n,m; scanf ("%d%d" ,&n,&m); if (n>m)swap (n,m); ll ans=1 ; for (ll l=1 ,r;l<=n;l=r+1 ){ r=min (n/(n/l),m/(m/l)); ll sum=preg[r]*inv_pg[l-1 ]%P; ans=ans*qpow (sum,(n/l)*(m/l)%(P-1 ),P)%P; } printf ("%lld\n" ,ans); } return 0 ; }
phi3
给出n n n ,求
( ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n ϕ ( i ) ϕ ( j 2 ) ϕ ( k 3 ) ϕ ( i ) ϕ ( j ) ϕ ( k ) ϕ ( ( i , j , k ) ) ) m o d 2 30 (\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n \frac {\phi(i)\phi(j^2)\phi(k^3)}{\phi(i)\phi(j)\phi(k)} \phi((i,j,k))) \mod 2^{30}
( i = 1 ∑ n j = 1 ∑ n k = 1 ∑ n ϕ ( i ) ϕ ( j ) ϕ ( k ) ϕ ( i ) ϕ ( j 2 ) ϕ ( k 3 ) ϕ ( ( i , j , k ) ) ) m o d 2 3 0
分析
这道题重点在于
ϕ ( i ) ϕ ( j 2 ) ϕ ( k 3 ) ϕ ( i ) ϕ ( j ) ϕ ( k ) \frac {\phi(i)\phi(j^2)\phi(k^3)}{\phi(i)\phi(j)\phi(k)}
ϕ ( i ) ϕ ( j ) ϕ ( k ) ϕ ( i ) ϕ ( j 2 ) ϕ ( k 3 )
这堆东西的化简.很显然,我又不会.
观察ϕ ( n ) \phi(n) ϕ ( n ) 的公式
ϕ ( n ) = n ∏ i ( 1 − 1 ϕ ( i ) ) \phi(n)=n\prod_i(1-\frac 1{\phi(i)})
ϕ ( n ) = n i ∏ ( 1 − ϕ ( i ) 1 )
可以得出上面那一堆等于j k 2 jk^2 j k 2 .剩下的就又都一样了.
∑ i = 1 n ∑ j = 1 n ∑ k = 1 n j k 2 ϕ ( ( i , j , k ) ) = ∑ d ∑ i = 1 n ∑ j = 1 n ∑ k = 1 n j k 2 ϕ ( d ) [ ( i , j , k ) = d ] = ∑ d ∑ t ϕ ( d ) μ ( t ) t 3 d 3 ∑ i ≤ n t d ∑ j ≤ n t d ∑ k ≤ n t d j k 2 = ∑ T ∑ i ≤ n T ∑ j ≤ n T j ∑ k ≤ n T k 2 ( T 3 ∑ d ∣ T ϕ ( d ) μ ( T d ) ) \begin{aligned}
\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n jk^2 \phi((i,j,k)) &=\sum_d\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n jk^2 \phi(d)[(i,j,k)=d] \\
&=\sum_d \sum_{t} \phi(d) \mu(t) t^3d^3 \sum_{i\leq \frac n{td}}\sum_{j \leq \frac n{td}}\sum_{k \leq \frac n{td}} jk^2 \\
&=\sum_T \sum_{i\leq \frac nT}\sum_{j \leq \frac nT} j\sum_{k \leq \frac nT}k^2 (T^3 \sum_{d|T} \phi(d) \mu(\frac Td))
\end{aligned}
i = 1 ∑ n j = 1 ∑ n k = 1 ∑ n j k 2 ϕ ( ( i , j , k ) ) = d ∑ i = 1 ∑ n j = 1 ∑ n k = 1 ∑ n j k 2 ϕ ( d ) [ ( i , j , k ) = d ] = d ∑ t ∑ ϕ ( d ) μ ( t ) t 3 d 3 i ≤ t d n ∑ j ≤ t d n ∑ k ≤ t d n ∑ j k 2 = T ∑ i ≤ T n ∑ j ≤ T n ∑ j k ≤ T n ∑ k 2 ( T 3 d ∣ T ∑ ϕ ( d ) μ ( d T ) )
设g ( n ) = ∑ d ∣ T ϕ ( d ) μ ( T d ) g(n)=\sum_{d|T} \phi(d) \mu(\frac Td) g ( n ) = ∑ d ∣ T ϕ ( d ) μ ( d T ) ,直接筛.最后计算前缀和的时候再乘上n 3 n^3 n 3 就可以了.
这道题的取模还有这种处理方法: 直接取数组为unsigned
并自然溢出.二进制后30位 不会受到影响.
代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 #include <iostream> #include <algorithm> #include <cstring> #include <string> #include <vector> using namespace std;using ull=unsigned long long ;using ll=long long ;const int MAXN=10000010 ;const unsigned P=1 <<30 ;bool isnp[MAXN]; vector<int > primes;int t[MAXN],M[MAXN];unsigned Mt[MAXN];unsigned g[MAXN]; ll preg[MAXN];void init (int n) { isnp[1 ]=1 ; g[1 ]=1 ; for (int i=2 ;i<=n;i++){ if (!isnp[i]){ primes.push_back (i); g[i]=i-1 -1 ; t[i]=1 ; M[i]=Mt[i]=i; } for (int j=0 ;j<primes.size () && i*primes[j]<=n;j++){ int newone=i*primes[j]; isnp[newone]=1 ; g[newone]=g[i]*g[primes[j]]%P; t[newone]=1 ; M[newone]=Mt[newone]=primes[j]; if (i%primes[j]==0 ){ t[newone]=t[i]+1 ; Mt[newone]=Mt[i]*primes[j]%P; g[newone]=g[i/Mt[i]]*(Mt[newone]+Mt[i]/primes[j]-2 *Mt[i])%P; break ; } } } for (int i=1 ;i<=n;i++){ preg[i]=preg[i-1 ]+(ll)i*i%P*i%P*g[i]%P; preg[i]%=P; } }int main () { init (10000000 ); int kase; scanf ("%d" ,&kase); while (kase--){ int n; scanf ("%d" ,&n); ll ans=0 ; for (int l=1 ,r;l<=n;l=r+1 ){ r=n/(n/l); ull lim=n/l; ull sum1=lim*(lim+1 )%(2 *P)/2 ; ull sum2=lim*(lim+1 )%(6 *P)*(2 *lim+1 )%(6 *P)/6 ; ans=ans+lim*sum1%P*sum2%P*(preg[r]-preg[l-1 ])%P; } printf ("%lld\n" ,ans%P); } return 0 ; }