[HDU 6704] Kth Occurrence

You are given a string S consisting of only lowercase english letters and some queries.

For each query (l,r,k), please output the starting position of the k-th occurence of the substring SlSl+1…Sr in S.

分析

第一个问题是快速找出所有出现的子串的位置,可以使用后缀数组.这些字串出现在sa的一个连续的区间中.

第二个问题是找出这些出现位置中的第k大,可以使用主席树,以sa建树.

代码

思路清晰,但这代码它不好写

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <string>
#include <cstdlib>
#include <cmath>
using namespace std;
const int MAXN=100060;
using ull=unsigned long long;

int n;
int sa[MAXN], x[MAXN], c[MAXN], y[MAXN];
char a[MAXN];

inline void SA()
{
int m = 128;
for (int i = 0; i <= m; i++)
c[i] = 0;
for (int i = 1; i <= n; i++)
c[x[i]]++;
for (int i = 1; i <= m; i++)
c[i] += c[i - 1];
for (int i = n; i; i--)
sa[c[x[i]]--] = i;

for (int k = 1, p; k <= n; k <<= 1)
{
p = 0;
for (int i = n; i > n - k; i--)
y[++p] = i;
for (int i = 1; i <= n; i++)
if (sa[i] > k)
y[++p] = sa[i] - k;

for (int i = 0; i <= m; i++)
c[i] = 0;
for (int i = 1; i <= n; i++)
c[x[i]]++;
for (int i = 1; i <= m; i++)
c[i] += c[i - 1];
for (int i = n; i; i--)
sa[c[x[y[i]]]--] = y[i];

p = y[sa[1]] = 1;
for (int i = 2, a, b; i <= n; i++)
{
a = sa[i] + k > n ? -1 : x[sa[i] + k];
b = sa[i - 1] + k > n ? -1 : x[sa[i - 1] + k];
y[sa[i]] = (x[sa[i]] == x[sa[i - 1]]) && (a == b) ? p : ++p;
}
swap(x, y);
m = p;
}
}

int tot;
int sum[(MAXN << 5) + 10], rt[MAXN + 10], ls[(MAXN << 5) + 10],
rs[(MAXN << 5) + 10];

int build(int l, int r) //建树
{
int root = ++tot;
if (l == r)
return root;
int mid = l + r >> 1;
ls[root] = build(l, mid);
rs[root] = build(mid + 1, r);
return root; //返回该子树的根节点
}
int update(int k, int l, int r, int root) //插入操作
{
int dir = ++tot;
ls[dir] = ls[root], rs[dir] = rs[root], sum[dir] = sum[root] + 1;
if (l == r)
return dir;
int mid = l + r >> 1;
if (k <= mid)
ls[dir] = update(k, l, mid, ls[dir]);
else
rs[dir] = update(k, mid + 1, r, rs[dir]);
return dir;
}
//left root, right root, querying l,r, the k-th
int query(int u, int v, int l, int r, int k) //查询操作
{
int mid = l + r >> 1,
x = sum[ls[v]] - sum[ls[u]]; //通过区间减法得到左儿子的信息
if (l == r){
return l;
}
if (k <= x) //说明在左儿子中
return query(ls[u], ls[v], l, mid, k);
else //说明在右儿子中
return query(rs[u], rs[v], mid + 1, r, k - x);
}

int height[MAXN];
int st[20][MAXN];
inline void get_height() {
int k = 0;
for (int i = 1; i <= n; ++i) {
if (x[i] == 1) continue;
if (k) --k;
int j = sa[x[i] - 1];
while (j + k <= n && i + k <= n && a[i + k] == a[j + k]) ++k;
height[x[i]] = k;
}
}
void build_st() {
for (int i = 1; i <= n; i++) st[0][i] = height[i];
for (int k = 1; k <= 19; k++) {
for (int i = 1; i + (1 << k) - 1 <= n; i++) {
st[k][i] = min(st[k - 1][i], st[k - 1][i + (1 << k - 1)]);
}
}
}
int lcp(int ll, int rr) {
int l = x[ll], r = x[rr];
if (l > r) swap(l, r);
if (l == r) return n - sa[l]+1;
int t = log2(r - l);
return min(st[t][l + 1], st[t][r - (1 << t) + 1]);
}

int main(){
int kase;cin>>kase;
while(kase--){
int nlen,qlen;cin>>nlen>>qlen;
scanf("%s",a+1);
for(int i=0;i<MAXN;i++)x[i]=a[i];
n=nlen;
SA();
n=nlen;

get_height();
build_st();

/*
for(int i=1;i<=nlen;i++)cout<<sa[i]<<" ";
cout<<endl;
for(int i=1;i<=nlen;i++)cout<<x[i]<<" ";
cout<<endl;
*/

tot=0;
memset(sum,0,sizeof(sum));
rt[0] = build(1, nlen);
for (int i = 1; i <= n; ++i)
rt[i] = update(sa[i], 1, nlen, rt[i - 1]);

while(qlen--){
int ql,qr,qk;
scanf("%d%d%d",&ql,&qr,&qk);
int sublen=qr-ql+1;

int ex_l,ex_r;
//binary search
{
int l=1,r=x[ql];
while(r-l>1){
int mid=(l+r)/2;
if(lcp(sa[mid], ql) >= sublen){
r=mid;
}else l=mid+1;
}
for(l;l<=r;l++){
if(lcp(sa[l], ql) >= sublen){
ex_l=l;
break;
}
}
}
{
int l=x[ql],r=nlen;
while(r-l>1){
int mid=(l+r)/2;
if(lcp(sa[mid], ql) >= sublen){
l=mid;
}else r=mid-1;
}
for(r;r>=l;r--){
if(lcp(sa[r], ql) >= sublen){
ex_r=r;
break;
}
}
}
//cout<<ex_l<<" "<<ex_r<<endl;
if(ex_r-ex_l+1<qk){
cout<<-1<<endl;
} else cout<<query(rt[ex_l - 1], rt[ex_r], 1, nlen, qk)<<endl;
}
}

return 0;
}

[HDU 6704] Kth Occurrence
https://blog.chenc.me/2019/08/24/hdu-6704-kth-occurrence/
作者
CC
发布于
2019年8月25日
许可协议